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A height- and flow-dependent model for turbulent viscosity is employed to explain
the generation of sand waves in tidal seas. This new model resolves the problem of
excitation of very long waves in sand wave formation, because it leads to damping of
the long waves and gives a finite separation between the most excited mode and the
zero mode. For parameters within their physically realistic ranges, a linear analysis
of the resulting system yields a first excited mode whose wavelength is similar to the
characteristic wavelength of sand waves observed in nature. The physical mechanism
of sand wave formation as predicted by the new model is explained in detail. The
dispersion relation obtained can be the starting point for a weakly nonlinear analysis
of the system.

1. Introduction
The regularity of large-scale sea-bed patterns is rather striking. Ever since such

patterns were first observed, it has been a challenge to explain their origin, spatial/
temporal scales and structure. There are many different kinds of periodic features
which can be distinguished in tidal seas. At the largest scale we have tidal sand
banks, huge elongated sand bodies spaced 5 to 10 km apart. Their orientation is
slightly anticlockwise with respect to the prevailing tidal current. A recent review on
the appearance and generation of sand banks is given by Dyer & Huntley (1999). They
can be described as free unstable modes appearing due to the interaction between
horizontal tidal motion and the sandy sea bed (see Huthnance 1982; de Vriend 1990;
Hulscher, de Swart & de Vriend 1993; Hulscher 1996). Shore-face connected ridges
(see van de Meene 1994) have roughly the same size as tidal sand banks, but they are
oriented clockwise with respect to the tidal motion. Their generation can be explained
by the interaction of the long-shore currents on a sloping bed, see Falques, Calvete
& de Swart (1998). The subject of the present study is sand waves, see figure 1. These
are much smaller than sand banks and cover large areas of many sea beds, see e.g.
Off (1963), Huntley et al. (1993), Katoh et al. (1998). These observations indicate that
the spacing between sand waves varies between 100 m and 800 m and that their crests
are more or less perpendicular to the main tidal current direction.

Tidal motion of water has been shown to be responsible for the formation of sand
waves (Hulscher 1996). The main idea is as follows. If a periodic perturbation is
applied to the bed, then the reaction of the time-periodic (tidal) flow will contain
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Figure 1. Sand waves near the Euro-channel (North Sea). After van Goor & Andorka Gal (1996),
courtesy of Rijkswaterstaat.

a time-independent component which is always directed towards the crests of the
perturbation. This result has been reported in earlier works (for sand ripples, it
was observed experimentally by Sleath (1976), and the exact solution for certain
parameter ranges was given by Lyne 1971). In the context of sand pattern formation,
the corresponding (truncated) solution was found by Blondeaux (1990) who studied
small sand ripples created by sea waves, and by Hulscher (1996) who modelled the
formation of sand waves in tidal seas. In all these cases, the time-averaged flow over
the bed perturbation looks like circulating cells directed up the hill near the bed. The
bed shear stress corresponding to these cells causes the growth of the perturbation.
The counteracting mechanism is given by gravity, and the balance between the two
defines the behaviour of the system. In the case of sand ripples, the system chooses
a finite critical wavenumber which is excited if the currents are sufficiently strong.
In the case of sand waves, no intrinsic wavelength was found in the linear analysis.
This contradicts field observations which indicate the existence of a finite peak in the
spectrum of sand waves.

In the model of Hulscher (1996) for tidal seas, the turbulent viscosity is assumed
to be an external constant of the system. This leads to the excitation of a wide
range of wavenumbers. As soon as currents are strong enough to overcome gravity,
a bandwidth of wavenumbers between zero and some finite k becomes excited,



Linear instability mechanisms for sand wave formation 221

Bed location

Hydrodynamics

Sediment transport

Bed evolution

Figure 2. The morphological loop.

and ultra-long waves always have a finite growth rate. This non-physical behaviour
suggests that the model of Hulscher (1996) is incomplete. Even though it contains the
excitation mechanism responsible for the growth of sand waves, it fails to provide a
mechanism for damping ultra-long waves.

In this paper, we describe a mechanism which leads to the choice of a finite
wavelength in the pattern forming system. The main difference between our model
and the model of Hulscher (1996) is that here we drop the assumption that the
turbulent boundary layer is a constant. Bottom morphology interacts with the tidal
flow and changes its properties. The viscosity parameterization proposed in this work
reflects the fact that the turbulent boundary layer has a horizontal structure induced
by deformations of the bed. We discuss a class of models where the eddy viscosity
is a functional of the depth and the velocity, and give a set of conditions on the
functional which provide a damping mechanism for ultra-long waves. It turns out
that this mechanism is present in the flow as long as the eddy viscosity is larger in the
troughs and smaller over the crests of the bed perturbation. We give a simple graphical
explanation of the processes that take place in the system and explain why the depth-
dependent viscosity helps to suppress ultra-long waves. We also construct a simple
example of a functional which possesses the necessary properties for suppressing the
long waves and perform a linear analysis of the corresponding system. The resulting
critical wavelength is similar to typical wavelengths of sand waves observed in nature.

In § 2 we discuss the model. The basic tidal solution is given explicitly and a linear
analysis is performed. Section 3 contains the results for a real physical situation.
Section 4 is devoted to uncovering the physical mechanisms that lead to the bed
instability. The role of the depth- and near-bed-dependent viscosity is explained from
first principles. It is shown why the new viscosity mechanism helps to stabilize the
very long waves. Section 5 presents some discussion and generalization of the results.

2. Model
In order to describe the formation of sand waves in a tidal sea, one needs to model

the morphodynamic processes. This means that the equations of tidal motion for
water and a model for sediment transport have to be specified, see figure 2. Once
this is done, the coupling between the components of the morphodynamic loop is as
follows. For a given bed level, the temporal and spatial variations of the sea water
motion are described by the hydrodynamic model. These motions create shear stresses
at the sea bed, which in turn make grains at the bed move. The bed shear stress is the
relevant quantity for a bed-load sediment transport formulation. The spatial gradients
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Figure 3. The geometry of the system and notation.

of the sediment transport cause local bed changes. Once the bed has changed, the
new bed profile can be used as an input for the hydrodynamic equations, and the
cycle can start again.

2.1. Basic equations

Sand wave crests are much longer than the spacing between them. In a three-
dimensional model it has been found that they are oriented almost perpendicular to
the tidal motion and are only slightly affected by the Coriolis force (see Hulscher
1996). Therefore, we can restrict ourselves to one horizontal dimension and assume
the bed to be homogeneous along the crests. Let x be the horizontal axis (going
across the wave crests) and z the vertical one (pointing upwards). The bottom profile
is located at z = h(x) and surface at z = H + ζ(x) (note that z = 0 and z = H are the
undisturbed bed and surface levels respectively, see figure 3). For the local (generally
x-dependent) depth we introduce the notation D. Finally, u is the water velocity with
components (u, w) directed along x and z. The hydrodynamic model which describes
turbulent motion is given by the two-dimensional vertical Navier–Stokes equation,

∂u

∂t
+ (u · ∇)u− ∇τ̂ = −∇p

ρ
, (2.1)

∇ · u = 0, (2.2)

where τ̂ is the shear stress matrix

(
τxx τxz

τzx τzz

)
with the Reynolds stress components

τxx = 2νhort ∂xu, τzz = 2νt ∂zw, (2.3)

τxz = τzx = (νt ∂zu+ νhort ∂xw), (2.4)

(note that here and later in the text we will use three equivalent ways to denote
partial derivatives: fx ≡ ∂xf ≡ ∂f/∂x and similarly with coordinate z). The stress
components given above enter the momentum balance after averaging over the
smaller-scale turbulent contributions in the advective terms (see Pedlosky 1987). In
the equations above, νt and νhort are the vertical and horizontal turbulent eddy viscosity
components, ∇ = (∂x, ∂z), ∇p is the horizontal pressure gradient and ρ is the sea water
density. It will turn out that the terms containing νhort do not play a significant role
in the analysis, and only the vertical viscosity is important. In this paper we assume
that the viscosity coefficient νt is independent of z. This assumption is commonly
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made despite being somewhat open to debate. In the next section we present two
different models for the vertical viscosity. The boundary conditions on the sea surface,
z = H + ζ(x), are given by

w =
∂ζ

∂t
+ u

∂ζ

∂x
(2.5)

τ|| = τ⊥ = 0, (2.6)

where (τ||, τ⊥) is the total shear stress. The boundary conditions at the sea bottom,
z = h(x), are

τ|| = S ′u, (2.7)

w =
∂h

∂t
+ u

∂h

∂x
. (2.8)

Equation (2.7) gives a relation between the bottom shear stress and the bottom
velocity (see Maas & van Haren 1987). It can be viewed as a ‘relative’ of the
empirical expression τb ≡ u2∗, where τb is the bed shear stress and u∗ is the so-called
friction velocity. However, equation (2.7) should not be confused with a linearization
of this expression. In fact, the combination of equation (2.7) and a z-independent
vertical viscosity is used as a model to describe the bottom shear stress and the
velocity profile in a hydrodynamical system (see also Engelund 1970). In equation
(2.7), S ′ is the resistance parameter (S ′ < ∞ corresponds to a non-zero slip, S ′ =
resistance = 1/slip). One could argue that S ′ = ∞, the bed velocity u = 0, is the
most realistic condition. It is true in the case when the turbulent velocity, νt, is taken
to be a function of depth. However, in the present model, νt does not depend on z.
The combination of S ′ = ∞ and a z-independent eddy viscosity would give a greatly
overestimated bottom shear stress, because z-independent viscosity models do not
work well near the bed. Moreover, it is not the bed velocity which is responsible for
the movement of the sand grains, but the bed shear stress, so the latter needs to
be modelled in a correct way. Therefore, in physically realistic cases the resistance
parameter S ′ must be finite.

Unlike depth-averaged models, the hydrodynamic model (2.1)–(2.8) explicitly gives
the bed shear stress. This is the relevant quantity which determines the sediment
transport, q. When modelling q, we choose to concentrate on the bed-load sediment
transport and neglect the transport of suspended material. This is not a real short-
coming, as at offshore locations the bed-load transport is usually dominant. The
bed-load sediment transport at the sea bed is modelled by

q = α′|τb|b
(
τb − λ′ ∂h

∂x

)
. (2.9)

In this expression, τb denotes the volumetric bed shear stress (physical shear stress
divided by the water density, hereafter we refer to it as bottom shear stress). Formula
(2.9) is a generic expression that reflects the influence of the two most important
forces which act on bed sediment grains. The first term shows the scraping effect
of the drag force. The second term represents the gravity component along the bed
profile; the effect is weighted by the down-slope coefficient λ′. Finally, the proportion-
ality coefficient α′ in combination with the nonlinearity parameter b describes how
efficiently the particles of sand are transported by the bed shear stress.

The particular expression for the sediment flux can be chosen in a number of
ways (see, for instance, Fredsoe & Deigaard 1992), but it turns out that as long as
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it contains both the ‘drag force term’ and the ‘down-slope correction’, the qualitative
result will be the same. It is possible to get some intuition on the orders of magnitude
using specific bed-load transport models which lead to expressions for the coefficients
b, α′λ′ as function of sediment characteristics (size, threshold angle, weight, etc). In
Appendix B, some explicit estimates are given based on a Meyer–Peter–Muller model
on a sloping bed in combination with threshold effects. The arguments given by Dyer
(1986) motivate the choice b = 1

2
.

Following the morphological loop, we need to couple the hydrodynamic system
with an equation describing sediment motion. This is given by a sediment mass
conservation law, ∂h/∂t = −∂q/∂x.

2.2. Turbulence models

Model (a). When studying large-scale morphological processes, the details of small-
scale water motion can be effectively incorporated in the eddy viscosity coefficient, νt
(see Pedlosky 1987). The simplest model for turbulent viscosity is νt = ν0, a constant.
It has already been shown by Hulscher (1996) that this gives qualitatively wrong
behaviour of the dispersion curve for small wavenumbers (k → 0). Namely, the very
long bed modes are the first ones to be exited. This means that the model fails to grasp
some important physics in the system. Our suggestion is that this can be improved
by taking into account the fact that viscosity depends on physical parameters of the
system.

Model (b). We would like to motivate our choice of viscosity parameterization
with the following intuitive considerations. The quantity νt defines the thickness of the
turbulent boundary layer,

√
2νt/σ. For simple unidirectional or harmonic (tidal) flows

over a flat bed, the assumption that this thickness is constant in time and space is not
an unreasonable one. We will denote the (constant) eddy viscosity corresponding to
an unperturbed tidal motion over a flat bed, as ν0. Now, for more complicated flows,
the viscosity may become x- and t-dependent. Let us assume that the unperturbed
tidal flow is u0(z, t) = ũ(z) sin (σt + Φ(z)), and the bed distortion is periodic, e.g.

h(x) = 2ĥ cos kx. As water moves back and forth over bumps on the bed, the ‘amount
of turbulence’ in water is likely to acquire a horizontal structure induced by the bed
profile. The time-dependence of the flow will also affect the distribution of turbulent
vortices. As long as the sand bumps are not too large, the viscosity changes induced by

the bottom distortion are linear in ĥ. The following expression for the eddy viscosity
summarizes these ideas:

νt = ν0(1 + 2ĥ [α1(k) cos kx+ α2(k) sin kx u0(h, t)]). (2.10)

The coefficients α1 and α2 in equation (2.10) could be made z-dependent but in this
paper we will not consider this case. The x-dependence of the viscosity follows from
the symmetries of the equations and the bed perturbation, i.e. νt should be invariant
with respect to the change x→ −x, u→ −u. The first term in the square brackets in
equation (2.10) represents time-independent changes in the eddy viscosity induced by
the bed geometry. The maxima and minima of these changes must coincide with the
extrema of the bed distortion. To prove this we note that the expression cos (kx− χ) is
invariant under the transformation x→ −x only if χ = nπ, n ∈ Z , i.e. the dependence
must be ± cos kx, which is exactly in (out of) phase with the bed structure. The
second term in the square brackets of equation (2.10) is the time-dependent part
of the viscosity changes. It is induced by the time-periodic flow and therefore has

the same time dependence as the tidal flow itself. Note that if ĥ is small, then we
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can replace u0(h, t) by u0(0, t), because the difference is quadratic in ĥ. In a more
general case, this term may have a phase shift with respect to the tidal flow (i.e. the
time-dependence as sin (σt+ Φ′), Φ′ 6= Φ(0)), or it could be a (possibly z-dependent)
functional of the flow velocity. Again, equation (2.10) represents the simplest case.
The spatial dependence of this term is periodic in x, but the maxima must be shifted
with respect to the extrema of the bed profile by π/2. This is again proven from the
invariance under the transformation x→ −x, u→ −u.

The k-dependence of the coefficients α1,2 has to satisfy certain physical requirements.

In model (2.10), νt = ν0 = const for a flow over a flat bed (ĥ = 0). To be consistent

with this, α2 must vanish at k = 0, because situation ĥ 6= 0, k = 0 corresponds to
a flat bed as well.† On the other hand, the coefficient α1 tends to a finite constant
as k → 0, i.e. different (time-independent) values of viscosity correspond to different
depths even in the case of a flat bed. The signs of α1,2 are easily interpreted. For
instance, if α1 is negative, this means that the time-averaged viscosity is larger near
troughs than near crests. If α2 < 0, it follows that the eddy viscosity is smaller on
the downstream side of sand wave crests and larger on the upstream side (see figure
8). It is clear that the contribution from the second term in the square brackets of
equation (2.10) is vanishingly small for ultra-long waves. Therefore, it is the term
containing α1 which can make a difference for small values of k. It will turn out that
if the coefficient α1 in expression (2.10) is negative for small values of k, this provides
a mechanism for damping ultra-long sand waves.

An expression for eddy viscosity in terms of bulk parameters. As an example of
parameterization (2.10), we propose a model where νt is expressed as a simple
functional of the depth and the flow velocity. Our choice is based on the mixing-
length concept, first introduced by Prandtl (1932). This means that the viscosity is
thought of as proportional to the product of a typical velocity scale and a typical
length scale (which gives the correct dimension). This reflects the fact that the amount
of turbulence depends on the size of the vortices that can form in the sea, and on
their velocity. The size of the vortices is restricted by the local depth, D, so the mixing
length scale can be modelled by D. There are many ways of defining a characteristic
value for the velocity which describes the rate of spinning of the turbulent vortices.
As the turbulence in tidal motion is mainly bed-generated, the characteristic velocity
should be measured near (or at) the bed. In the context of a z-dependent viscosity,
the characteristic velocity scale is usually modelled by the friction velocity, u∗, see e.g.
Tennekes & Lumley (1972). In our case (a z-independent viscosity model), we use
the near-bed velocity instead of the friction velocity in order to find the appropriate
characteristic scale. We propose the following parameterization:

νt = c1D|unb|trunc , (2.11)

where c1 is a dimensionless constant, D is the local depth and the near-bed velocity,
unb = u(z = d), is defined as the horizontal velocity estimated at some point z = d
close to the bottom (see figure 3). The truncation procedure in expression (2.11)
is described below (see item iv). It will be shown later that the direct dependence

† One can argue that for k = 0, the last term in (2.10) vanishes even for finite values of α2 because
it involves sin kx. However, this fact is irrelevant and is a consequence of our choice of the origin.

For a general periodic bed perturbation, 2ĥ cos (kx+ φ), the term responsible for time-dependent

changes of viscosity is 2ĥν0α2(k) sin (kx+ φ)u0(h, t). This does not vanish automatically as k → 0,
and therefore we need the assumption limk→0 α2 = 0. Another way to show this is to use for-
mula (2.10) directly. We need limk→0 ||α2(k) sin kx|| = 0, where || · || is a norm, e.g., the l∞–norm,
||f(x)|| = supx∈R(|f(x)|). This can be only achieved if limk→0 α2(k) = 0.



226 N. L. Komarova and S. J. M. H. Hulscher

on the local depth does not play a significant role and it is the near-bed velocity
dependence which is important. In a tidal environment, an analogous eddy viscosity
parameterization was proposed by Soulsby (1990), and for rivers by Engelund (1970).
More details and alternative (zero-equation) models for eddy viscosity can be found,
for example, in Rodi (1980). Note that the concrete value of d in equation (2.11) is not
important for this analysis as long as d is of the order of the sand wave magnitude.
The reason for this is that terms proportional to d do not enter the linear problem,
they only appear at higher orders (see also the comment after equation (2.31)).

Now we list and discuss the main properties of the phenomenological model (2.11).

(i) νt > 0, which reflects the physical meaning of viscosity.

(ii) νt is linear in D and u. This assumption is consistent with, e.g., Prandtl (1932)
and Tennekes & Lumley (1972).

(iii) νt is z-independent. We introduced this limitation for simplicity. This assump-
tion can be dropped for more refined models.

(iv) The time-dependence of νt cannot be more complex than the dynamics of the
flow. Indeed, the quantity νt defines the vertical distance over which the flow changes.
Therefore, its time-dependence has to be ‘slaved’ to the time-dependence of the flow.
In the case of a periodic (tidal) flow containing only the first n time-harmonics,
this can be interpreted as follows: the expression for the turbulent viscosity can be
time-dependent, but it cannot contain time-harmonics higher than n. For instance,
the expression for |u| will contain all the time-harmonics, but the harmonics higher
than n cannot be allowed in the expression for viscosity. This follows from simple
physical common sense: the turbulent boundary layer of a flow cannot change faster
than the flow itself. Therefore, we need to truncate the expression for νt so that it
only contains n harmonics.

(v) If we linearize νt for small bed perturbations, it can be written in the form (2.10),
where α1 and α2 are both functions of k. It will be shown that limk→0 α1 = const < 0
and α2 ∼ k for small k.

Our viscosity model is consistent with the choice of finite values of the resistance
parameter, S ′ < ∞. In case of zero slip (an infinite resistance parameter), νt would be
vanishingly small. In general, the resistance parameter S ′ in equation (2.7) is an x- and
t-dependent quantity. In this work, we assume that it depends on the characteristic
velocity, unb, in the same way as νt does, i.e. for model (a), νt = ν0, S

′ = S ′0; for
model (b), νt = c1|unb|trunc D, S ′ = c2|unb|trunc. Here, both c1 and c2 are dimensionless
constants.

Remarks. – Time-dependence. We choose our model in such a way that (i) νt
depends on h, and (ii) νt(h = 0) = ν0 (a constant, see Appendix A). The former
assumption is new and crucial, whereas the latter one is based on earlier, generally
accepted, work on tidal motion (Ekman dynamics; see e.g. Pedlosky 1987; Maas
& van Haren 1987; Prandtl 1932). We know that models with time-independent νt
work well for tidal motion over a flat bottom. However, it is useful to note that, as
far as our analysis is concerned, ν0 may or may not be time-dependent. As long as
νt becomes slightly bigger in the troughs of a periodic perturbation, the ultra-long
suppression mechanism will be present, no matter what the time-dependence of ν0 is.

– The main difference between models (a) and (b). Model (b) assumes that eddy
viscosity depends on local depth. The difference with the earlier (constant) model is
that there, νt did not change when the bed was perturbed. The fact that viscosity
depends on h will lead to a new growth rate curve, which is a physically reasonable
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Quantity Scale Comments

x, z, h δ δ =
√

2ν0/σ, the unperturbed turbulent
boundary layer thickness

u, w U U, the tidal velocity amplitude
t 1/σ σ, the radian tidal frequency

ζ U2/g = f̂H f̂, the Froude number
τb, τ|| [τ] [τ] = ν0U/δ
p [p] [p] = ρσ2δ2

Table 1. Scaling used in the model. Here, quantity = scale × dimensionless quantity.

consequence of such a dependence. Mathematically this will be shown by a linear
analysis.

– Robustness. The calculations of §§ 2 and 3 are performed with the specific func-
tional form (2.11). It is however important to note that the physical mechanism of
ultra-long wave suppression described in § 4 only relies on property (v) and not on
the concrete form of the functional.

2.3. Scaling and basic tidal solution

Our aim is to model sand waves generated by tide–topography interaction. This
motivates the scaling given in table 1. The constant δ, the (unperturbed) turbulent
boundary layer thickness, is a characteristic depth over which the water profile changes

in the vertical direction. The Froude number, f̂, gives the (squared) ratio between the
water velocity and the speed of small-amplitude surface waves in shallow water. We
can rewrite equations (2.1)–(2.2) in dimensionless variables,

2ut − 1/ν0[νt uzz + 2∂x(ν
hor
t ux) + νhort wxz] + R(uux + wuz) = −pxR,

2wt − 1/ν0 [2νt wzz + ∂x(ν
hor
t wx) + ∂x(νt uz)] + R(uwx + wwz) = −pzR,

ux + wz = 0,

(we introduced the notation R = 2U/(δσ) and used the assumption that viscosity is
z-independent). The characteristic viscosity, ν0, is defined as the turbulent viscosity
corresponding to the basic flow solution (see Appendix A). It is convenient to
introduce the stream function, Ψ , so that u = Ψz , w = −Ψx. Then the above
equations can be combined by eliminating the pressure gradients, and the system can
be rewritten as

R−1 [2∂t(∂
2
z + ∂2

x)− ν−1
0 N̂]Ψ = −Ψz(∂

2
z + ∂2

x)Ψx +Ψx(∂
2
z + ∂2

x)Ψz, (2.12)

where N̂ is a linear operator depending on the viscosity,

N̂ = νt∂
4
z + 2∂xν

hor
t ∂x∂

2
z − νhort ∂2

x∂
2
z + 2∂xνt∂x∂

2
z + ∂2

xν
hor
t ∂2

x − ∂2
xνt∂

2
z . (2.13)

The boundary conditions in dimensionless variables are

w = f̂

(
σH

U

∂ζ

∂t
+
H

δ
u
∂ζ

∂x

)
, τ|| = τ⊥ = 0 at z =

H

δ
(1 + f̂ζ), (2.14)

τ|| =
S ′δ
ν0

u, w =
∂h

∂t
+ u

∂h

∂x
at z = h. (2.15)
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Note that in situations of interest, H/δ is of order one and σH/U is less than one.
Finally, the sediment evolution equation in dimensionless variables is

∂h

∂t
= −α ∂

∂x

(
|τb|b

(
τb − λ∂h

∂x

))
, (2.16)

where α = α′[τ]3/2/(σδ2) and λ = λ′/[τ], see Appendix B. We will make the following
important approximations:

(i) Shallow water approximation: The geometry of our system is such that the
relevant horizontal distances (the size of sand waves, which is of the order of hundreds
of metres) are much larger than the vertical distances (the local depth is less than fifty
metres). Since both the horizontal and vertical distances are scaled in the same way, in
dimensionless variables this is manifested in the relation ‖∂x‖ � ‖∂z‖. This allows us to
neglect the second x-derivatives in equations (2.12)–(2.13) in comparison with second
z-derivatives. For tidal environments, it is very difficult to give reliable estimates for
the horizontal viscosity coefficient. According to Okubo & Ozmidov (1970), Ozmidov
(1968), the value is of the same order of magnitude or slightly larger than the vertical
viscosity. Indeed, in the horizontal direction one needs to resolve up to distances
of about 100 m or less, which gives the estimate νhort ∼ 10−1 m2 s−1 or less, and the
vertical viscosity coefficient has the order of magnitude of 10−2 m2 s−1. Therefore, the
effects of the horizontal viscosity in this case are very small. However, some authors
give much larger estimates (see Beerens 1995, who uses νhort ∼ 1−2 m2 s−1). In this case,
the horizontal viscosity plays a role. Fortunately, even if the latter estimate were the
case, inclusion of this term would not add new behaviour in this model. Namely, the
effect of the term with horizontal viscosity coefficient would lead to the damping of
small bed forms for hydrodynamical reasons, and this behaviour is already included
through the down-hill sediment transport mechanism. In order to keep the model as
transparent as possible, we neglect the term with νhor from now on. Finally, in the
shallow water approximation we can neglect the contribution ∂xu in comparison with
∂zu in the expression for the bottom shear stress, τ||. Therefore, according to table 1,
in dimensionless variables, the shear stress is given by νt/ν0∂zu.

(ii) ‘Rigid lid’ approximation: f̂ � 1. The surface boundary conditions are now
evaluated at the constant height, z = H/δ. Therefore, the parallel surface shear stress,
τ||, is proportional to uz . This approximation also suggests that the surface boundary
condition, τ⊥ = 0, simply means that the pressure is hydrostatic. Since the pressure
does not enter equation (2.12), this condition does not enter the further analysis.

(iii) Quasi-stationary approach: ∆thydrodynamic/∆tmorphodynamic � 1. This follows from
the fact that α in equation (2.16) is a small quantity (see Appendix B). This physically
means that the ratio between the tidal period and the morphological time scale is
small. Therefore, one can neglect the time-derivative in the second equation (2.15).
Also, one can treat the shape of the bottom as a fixed function of x when solving the
hydrodynamic problem, and then average the sediment balance over a tidal period in
order to evaluate the long-term bed evolution (equation (2.16)). The relevant measure
for the morphological time is

∆T ≡ 1/(ασ). (2.17)

In other words, if we denote the physical time (measured in seconds) as tdim, then the
dimensionless hydrodynamical time variable and the morphological time variable are
given by t = tdimσ and Tm = tdim/∆T respectively.

Finally, we can write down the full dimensionless model describing the dynamics
of a water–sand system assuming the shallow water, rigid lid and quasi-stationary
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Figure 4. The components of the horizontal basic flow for H = 45 m, ν0 = 7 × 10−3 m2 s−1,
S ′0 = 4.7× 10−3 m s−1; in (a) the amplitude, ũ, of the velocity is given, and in (b) the phase shift in
radians is plotted versus the vertical distance from the bottom.

approximations:

1/R(2∂t − νt/ν0∂
2
z )Ψzz = −ΨzΨxzz +ΨxΨzzz , (2.18)

z = H/δ : Ψzz = 0, Ψx = 0, (2.19)

z = h : Ψzz − S ′δ/νt Ψz = 0, Ψx = Ψzhx, (2.20)

∂h

∂Tm
= − ∂

∂x
〈|τb|b(τb − λhx)〉, (2.21)

(the angular brackets denote the averaging over a tidal period).
System (2.18)–(2.21) has a solution which corresponds to an x-independent hori-

zontal tide over a flat bed (i.e. the solution Ψ does not depend on x, and h = 0).
In this paper we prescribe the time-dependence of the basic solution as an M2-tide.
In the subsequent analysis, all the higher harmonics (tides M4, M6 etc.) are neglected
(see § 2.4). The problem for the tidal flow is solved explicitly in Appendix A. The
solution can be written as

u0(z, t) = us(z) sin t+ uc(z) cos t ≡ ũ(z) sin(t+ Φ(z)), (2.22)

where

ũ(z) =
√
u2
s (z) + u2

c(z), tanΦ(z) = uc(z)/us(z). (2.23)

These two quantities are shown in figure 4 as functions of z. One can see from figure
4(a) that the water velocity amplitude increases away from the bed (the characteristic
distance over which it changes is defined by δ). Note that at the bed it is not equal to
zero because of the presence of a resistance parameter, S ′ < ∞. Figure 4(b) gives the
(relative) difference in time at which the maximum of the flow velocity is achieved.
For a typical tidal period of 12 hours 25 minutes, the surface flow lags approximately
(0.7/2π)× 12 h 25 min = 1 hour 23 minutes behind the bed flow.

2.4. Linear stability analysis

In order to study the formation of rhythmic patterns in this model, we perturb the

sea bottom so that the new bed profile looks like z = ĥei(ωTm+kx) + c.c., ĥ � 1. The
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local depth now varies spatially and is equal to D(x, Tm) = H − ĥei(ωTm+kx) + c.c.
The wavenumber k characterizes the spacing of the crests, −Imω is the growth rate

and ĥ denotes the amplitude of the bed pattern. As the bed is perturbed, the flow
pattern and (for model b) the turbulent viscosity change as well. Let us denote the
relative change of the viscosity with respect to ν0 as ν ≡ νt/ν0−1. Then the perturbed
quantities can be written as a vector, Ψ

h
ν

 =

 Ψbasic(z, t)
0
0

+ ĥei(ωTm+kx)

 Ψ1(z, t)
1
ν1

+ c.c. (2.24)

Note that the flow velocity perturbation, Ψ1, is an unknown function, whereas the
viscosity change, ν1, is a function of Ψ1 (it is specified further in this section). The
stream function, Ψ1, satisfies the following Orr–Sommerfeld-like equation:

(ikR)−1((2∂t − ∂2
z )Ψ1zz − ν1u0zzz ) = −u0Ψ1zz + u0zzΨ1, (2.25)

with the boundary conditions

z = H/δ : Ψ1zz = 0, Ψ1 = 0, (2.26)

z = 0 : Ψ1zz − S0Ψ1z = −(u0zz − S0u0z) + Γδ/Hu0, Ψ1 = −u0, (2.27)

where Γ = 0 for model (a), Γ = 1 for model (b), and the dimensionless resistance
parameter, S0, is defined in Appendix A. Note that system (2.25)–(2.27) is not an
eigen-value problem, but a forced system which is driven by the boundary condition
(2.27). The equation for the evolution of the sea bed now becomes

iω = 〈|τ0|1/2( 3
2
kτ1 − λk2)〉, (2.28)

where τ0 = ∂u0/∂z and τ1 = Ψ1zz + ν1∂u0/∂z.
Partial differential equation (2.25) can be reduced (approximately) to a system of

ordinary differential equations in z, using a truncated Fourier series in time which
represents the tidal harmonic components. In de Swart & Zimmerman (1993) and
Hulscher et al. (1993), only the first two terms in the series (the residual tide and the
sine and cosine parts of the basic tidal motion) were used. In Gerkema (2000), the
effects of such truncation were investigated explicitly for sand waves. It was shown
that in the regime where the tidal excursion length is much larger than the horizontal
spacing between the sand wave crests (kR large, which is true for our case), the
difference between the exact solution and the solution where only the first two time-
harmonics were kept, was less than 20%. Also it was pointed out that the qualitative
behaviour does not change as a result of the truncation. Due to the assumptions and
limitations already made in this study, including higher harmonics would not give
better results. Thus in this paper we only keep the first two harmonics, i.e. the solution
of equation (2.25) is taken in the form Ψ1(z, t) = iΨ10(z) + Ψ1s(z) sin t + Ψ1c(z) cos t.
The structure of (2.25)–(2.27) shows that Ψ10, Ψ1s and Ψ1c are real functions. The
resulting system of ordinary differential equations with boundary conditions is then
solved numerically (using the shooting in a fitting point method).

In model (a), the viscosity changes are not taken into account, so ν1 is identically
zero. In model (b), viscosity is given by expression (2.11), and therefore ν1 is time-
dependent. Using the known time-components of the near-bed flow, we find the
following structure:

ν1 = κ0 + iκs sin t+ iκc cos t, (2.29)
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where

κ0 = −δ/H + 1/ũ2 (usΨ1sz + ucΨ1cz )
∣∣
z=0, (2.30)

κs = 2/ũ2 usΨ10z

∣∣
z=0, κc = 2/ũ2 ucΨ10z

∣∣
z=0, (2.31)

and ũ is defined in equation (2.23). All the velocity values can safely be estimated
at z = 0, since a finite d only makes a contribution at a higher order. As we only
consider finite-slip situations, the velocity components at z = 0 are not zero. Note
that equation (2.29) in combination with (2.24) has the form of (2.10) with

α1 = κ0, α2 = −2/ũ2Ψ10z

∣∣
z=0 (2.32)

(this proves property (v) of § 2.2). Based on the previously discussed viscosity models,
dispersion relation (2.28) can be presented as

iω = 〈b|τ0|b−1k(Ψ10zz + (κsusz sin2 t+ κcucz cos2 t))− λ|τ0|b−1k2〉z=0. (2.33)

Due to the structure of equation (2.33) and the fact that the function Ψ1 is real,
it follows that Reω = 0, i.e. no travelling bed waves are to be expected. This is
consistent with the horizontal symmetries of the equations and the choice of the
(x-symmetric) basic state. There is no preferred direction in the system. It is often
suggested by observations that sand waves travel slowly (see Katoh et al. 1998). Our
model does not grasp this effect. In order to model this, one needs to break the
horizontal symmetry of the problem (for instance, to introduce a time-independent
component in the basic flow or give the bottom a very small slope). This goes beyond
the scope of this paper.

3. Results for a typical offshore location
We start by presenting some reference values for parameters of the system typical

for an offshore North Sea location. The tidal velocity can be taken from 0.5 to
1.5 m s−1, the tidal frequency is σ = 1.4 × 10−4 s−1. The local depth can vary from
10 m to about 55 m (this is the range where sand waves have been observed in
the North Sea, see Bijker, Wilkens & Hulscher 1998). The turbulent viscosity lies
between 10−3 and 10−1 m2 s−1. The slip parameter has a wide interval of values. We
experimented with S ′0 from 10−4 to 10−2 m s−1 which corresponds to the physically
relevant values given in Maas & van Haren (1987). The typical value for R is several
hundred, H/δ is several units (so that the depth is at most several times the viscous
depth) and kR > 1, which means that the horizontal spacing between the sand wave
crests is much smaller than the length of the tidal excursion. Typical values of the
parameters in the sediment transport model are given in Appendix B.

Let us take, for example, H = 45 m, ν0 = 7× 10−3 m2 s−1, S ′0 = 4.7× 10−3 m s−1 and
U = 0.5 m s−1. Then,

δ ≈ 10 m, H/δ ≈ 4.5, S0 ≈ 6.7, ∆T ≈ 2 years, [τ] ≈ 3.5× 10−4 m2 s−2, (3.1)

and the results are as follows.
Model (a). The result of the linear analysis for model (a) is consistent with what

was found by Hulscher (1996). If the currents are very weak, all the modes are
damped. As λ decreases below some λc (currents become strong enough to overcome
gravity), a finite connected bandwidth of excited modes appears between k = 0 and
some finite k (see figure 5, dotted line, excited modes are between k = 0 and k ≈ 0.035).
The smaller λ is, the larger the value of k which corresponds to the maximum of
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Figure 5. A comparison between the two viscosity models. The dotted line represents model (a),
and the solid line model (b). λ = 21.7 and the rest of the parameters are as in figure 4.
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Figure 6. Results of the linear analysis for model (b), λ is close to λc = 21.7. Parameters are the
same as in figure 4. kc corresponds to sand waves of length 571 m.

the dispersion curve becomes. However, modes with very small wavenumbers have a
positive growth rate for λ < λc. This is not physical because it predicts the excitation
of ultra-long waves.

Model (b). The following parameterization is used: νt = c1DU|unb|trunc , S
′ = c2U

|unb|trunc , c1 = 1.6 × 10−3, c2 = 4.8 × 10−2. This leads to the result given by the solid
line in figure 5. The corresponding values for ν0 and S ′0 are the same as given at the
beginning of this section, see equation (A 6) and (A 7). The behaviour of the system
is then as follows. If the control parameter, λ, is larger than λc ≈ 21.7, all the waves
are damped due to the gravity term (see figure 6a). As soon as λ becomes smaller
than λc, an exponentially growing mode appears which corresponds to kc ≈ 0.11, or
in dimensional variables, a wavelength of 571 m. This value is typical for sand waves.
The critical value of the control parameter, λc, belongs to the physically relevant
range given in Appendix B. An important feature is that there is a finite separation
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Figure 7. The time-independent component of the response flow (comes from Ψ0) corresponding
to the critical condition (k = kc, λ = λc), which looks like two rows of recirculating cells. All the
parameters are the same as in figure 4.

between the zero mode and the most excited wave which means that all the very long
waves are damped.

An example of the neutral stability curve for model (b) is shown in figure 6(b). The
time-independent component of the flow solution (u1, w1) for the critical conditions
(λ, k) = (λc, kc), is presented in figure 7. The time-independent flow looks like two
rows of circulating cells. The flow near the bottom is directed up the hill. This
result is predicted numerically, but it is very hard to observe in nature, because the
residual currents are very weak. For a wave as high as 10% of the undisturbed
water depth, and the tidal amplitude of 0.5 m s−1, the amplitude of the horizontal
velocity perturbation, Ψ0z , is only about 0.5 cm s−1 which is beyond the accuracy of
measurements at the present time.

Finally, we can evaluate the coefficients α1,2 of representation (2.10) using expression
(2.32). Computations show that α1 is always negative and tends to a negative constant
when k → 0. Note that the expression for α1 consists of two parts: the first term
in expression (2.30) comes from the direct dependence of νt on depth, D, and the
second term is the contribution from the unb-dependence of νt. Both contributions are
negative, but the latter is much larger. This means that the effect of viscosity changes
due to the direct D-dependence is too small to make a difference, and only the unb-
dependence of the viscosity is important for the flow dynamics (see also the comment
in the summary of § 4). The coefficient α2 is proportional to k for small values of
k. Its sign is determined by the sense of rotation of the time-independent cells. For
small values of k, the cells move in such a way that near the bed the flow is directed
from crests to troughs, and then α2 is positive. As the direction of rotation changes,
α2 becomes negative. In figure 8, we show qualitatively the viscosity distribution
corresponding to k = kc. It follows that the boundary layer,

√
2νt/σ, becomes thicker

on the upstream slopes of sand waves and thinner on the downstream slopes, i.e. there
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Figure 8. The viscosity changes corresponding to k = kc (i.e. α1 < 0, α2 < 0). Here, + (−) denotes
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Figure 9. The ν0 and H-dependence of the critical wavelength, lc, and the critical control
parameter, λc. For (a, b), parameter H = 45 m.

is always less turbulence behind each bump. On the average, the turbulent boundary
layer is thicker in troughs than it is over crests.

3.1. Parameter dependence of the results

The same qualitative picture (the shape of the dispersion relation and the flow field)
holds for a large range of physically relevant parameters, giving slightly different
critical wavenumbers and different critical values for the control parameter. This is
an indication of the fact that the mechanism is quite generic. We have performed
some calculations to determine the dependence of the most excited wavelength (and
also the critical value of the control parameter, λc) on physical parameters of the
system. The results are presented in figure 9. Plots (a) and (b) show the viscosity
dependence of the most excited wavelength, lc = 2π/kc, and λc. There, the constant
in the S ′ parameterization is fixed to be c2 = 4.8 × 10−2, and c1 changes to give
different values for the viscosity, ν0. As the near-bed velocity changes, the value of S ′0
changes slightly as well, which is indicated in table 2(a). The resulting plot shows that
the wavelength of sand waves grows with the eddy viscosity. In fact, the functional
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(a) (b)

H 25.0 30.0 35.0 40.0 45.0 50.0

ν0 0.6 0.7 0.8 0.9 1.0 1.1 1.2 ν0 3.3 4.2 5.1 6.0 7.0 8.0
S ′0 4.5 4.7 4.9 5.0 5.1 5.3 5.4 S ′0 4.0 4.2 4.4 4.6 4.7 4.8

Table 2. (a) Viscosity and resistance parameter values for figures 9(a) and 9(b). (b) The depth
dependence of the viscosity and the resistance parameter for figures 9(c) and 9(d). H is given in m,
ν0 in 10−2 m2 s−1, S ′0 in 10−3 m s−1.

dependence of lc is best described by lc ∝ √ν0 which indicates that the horizontal
wavelength scales with the turbulent boundary layer thickness, δ. This also coincides
with the observation of Hulscher (1996) that the horizontal size of sand waves grows
with viscosity. On the other hand, the critical control parameter dependence on the
viscosity is very weak (see figure 9b). The values found for λc fall in the physically
relevant range.

Figures 9(c) and 9(d) show the depth dependence of lc and λc. The constants used in
the viscosity and resistance parameterization are c1 = 1.6× 10−3 and c2 = 4.8× 10−2,
so that ν0 and S ′0 change with the depth according to table 2(b). Figure 9(c) shows
that the wavelength of sand waves decays with depth even though the dependence
on H is not too strong. Note that in the present analysis, parameters of the system
such as the tidal amplitude and the exponent b (equation (2.9)) were kept constant
even though the depth was varied. In a real system, those parameters might change
with depth which in turn can influence the depth dependence of lc. Therefore, the
results in figure 9(c) cannot be compared with measurements directly. As shown in
figure 9(d), the critical control parameter decays significantly with depth. This means
that one can expect to have λ < λc with a higher probability in a shallower sea than
in a deeper sea (for most situations, λ < 330, see Appendix B). In other words, sand
waves are more likely to be generated in a shallower sea than they are in a deeper
sea. This is in agreement with the observation of Wilkens (1997) which indicates that
in the North Sea sand waves do not appear at all if the depth is larger than about
55 m.

3.2. An analytical estimate for the sand wave wavelength

The length scale of the most favourable wave depends on the turbulent boundary layer
thickness which is in turn defined by the tidal frequency and the eddy viscosity. The
result for depth dependence suggests that the wavelength slightly decreases with H .
This has an explanation based on the main balance which determines the first excited
wavelength, namely, the balance between gravity and the flow strength. To obtain a
rough estimate, we can assume that the tidal response (the horizontal component of
the residual current) is proportional to the z-derivative of the tidal flow times the

amplitude of the perturbation, ĥ. This is because the term u0ĥ is the main driving
term in the linearized hydrodynamical system for Ψ1, see equation (2.27). Therefore,

we can write ĥΨ1 ∼ ĥu0. Note that this exactly satisfies equation (2.27) with Γ = 0
(here we neglect the weak effect of the direct depth-dependence of the viscosity). Now,
we can substitute this estimate for the response current into the linearized equation
(2.9). Considering the balance between the scraping term and the down-hill term, we
find

ν0u0zzh ∼ λ′kh, (3.2)
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where the perturbation of the bottom shear stress is τ1 ∼ ν0Ψ1zz ∼ ν0u0zδ
−1 ∼ τ0δ

−1.
Now, substituting ν0u0zz ∼ τ0/δ and using λ′/[τ] = λ, we get k ∼ 1/(λδ). Reversing
this expression and taking the critical values, we derive the simple estimate

lc ∼ λcδ, (3.3)

i.e. the wavelength of the sand waves is (usually more than) ten times larger than the
turbulent boundary layer thickness. This is indeed a correct estimate and it coincides
with the numerical fact that lc scales with

√
ν0. Also, since λc decays with depth, lc

decreases with depth as well, as indicated in figure 9(c).

4. Mechanisms for sand wave excitation
In this section we explain why viscosity model (b) is successful in suppressing

ultra-long waves, whereas model (a) is not. Note that in order to uncover all the
necessary physics, one does not need to use the concrete functional form (2.11) of the
viscosity parameterization. We will show that if the linearized viscosity functional is
given by (2.10) with α1 < 0 for small k (property (v) of § 2.2), this provides a damping
mechanism for ultra-long waves. To start, we notice that if a perturbation is added to
the sandy bed, then the flow changes due to two forcing mechanisms:

(a) directly, due to the bed perturbations (this happens both in models (a) and
(b));

(b) indirectly, because the bottom perturbations induce viscosity changes as in
equation (2.10) (this is only the case for model (b)).
When studying model (b), it is instructive to separate the driving term coming from
the depth- and velocity-dependent viscosity (equation (2.11)), neglecting the direct
effect of the bumps on the flow. Note that the x-dependent viscosity changes alone do
not correspond to any physically relevant situation. However, this approach enables
one to single out the role of viscosity perturbations.

Below we present some (numerically) observed properties of the response flow and
give qualitative arguments to explain them. From the two main properties, all the
important details of the instability and damping mechanisms can be understood.

Property 1. For model (a), periodic bed perturbations produce a time-independent
component of the response flow directed as in figure 10.

Remark. The flow dynamics described here has been observed by other authors
(Lyne 1971; Blondeaux 1990). It can be explained by looking at pressure gradients
induced by the bed geometry. However, we choose to develop another argument
based on the flow geometry, because this argument can be extended to the case of
viscosity perturbations.

We start with a horizontal tidal motion over a flat bed. The dotted lines in figure
11(a) depict the profile given by equation (A 8), i.e. the solution of problem (A 1)–(A 5).
Then we add a periodic perturbation to the bottom and assume that its wavelength is
very large in comparison with H/δ. We first consider a tide in the positive direction.

The tidal flow profile has to adjust to the changed bed geometry, as the flow
aims to satisfy the bed boundary condition and the water mass conservation law.
The solid lines in figure 11(a) represent the perturbed flow. They can be thought
of as solutions of problem (A 1)–(A 5), with the bottom boundary condition, (A 3),

evaluated at z = ±ĥ instead of z = 0. At a trough, the excess tidal velocity is positive
near the bed, and negative in the upper part of the water column (since the area
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(a)  Small k

(b)  Large k

Figure 10. The geometry of the time-independent component of the response flow for the constant-
viscosity model. (a) For small k, there is a single row of cells encouraging the bed perturbation. (b) As
k grows, a second row of cells appears on top. The lower row keeps its orientation.

(a)

Direction of tide

Tide

Tide

Time-independent velocity component (near bed)
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Figure 11. The instability mechanism. (a) Once the flat bed is perturbed, the M2-tide (dotted line)
has to adjust (solid line) so that the near-bed flow becomes smaller near crests and larger near
troughs. (b) The near-bed flow response for both directions of the tide is shown for a no-inertia
case (dashed lines) and in the presence of viscosity (solid lines). Due to viscosity, the flow response
lags behind. (c) The net effect after a full tidal period at a fixed (near-bed) level. The flow has a
negative sign (directed to the left) near the left-hand side of the trough and it is positive (directed
to the right) near the right-hand side of the trough.

under the profile cannot change due to the water mass conservation). The excess flow
has the opposite sign above a crest. The excess flow for some z near the bed is shown
in figure 11(b), dashed line.

Now, if there were no viscosity in the system, this forward tidal motion would be
exactly cancelled by the backward motion (figure 11b, the dashed lines). However, in a
real physical system there is inertia due to viscosity, i.e. the changes in the flow profile
which start at the bed need some time (and consequently some horizontal distance x)
to be transferred upwards. As a result, there is a z-dependent lag in the flow response
to the bottom changes, so that for any finite z, the maximum of the response is shifted
in the positive direction when the tide is moving to the right and in the negative
direction in the backward motion (see figure 11b, solid line). In short, the response
always lags behind. Graphically, the retarded flow response is shown in figure 11(b, c).
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(a)  Small k

(b)  Large k

Figure 12. The geometry of the time-independent component of the response flow in the (artificial)
case when the direct influence of bed perturbations is not taken into account and the viscosity is
perturbed. (a) For small k, there is a single row of cells destroying the bed perturbation. (b) As k
grows, a second row of cells appears from below. The direction of the near-bed flow reverses. Now
the bed perturbation is encouraged.

The resulting effect after one tidal period is found from the superposition of the two
solid lines in figure 11(b) and gives a non-zero residue component of the velocity
(figure 11c). This component does not depend on time and has indeed the correct
sign: the circulating cell is oriented as in figure 10. It is clear that such cells will carry
sediment from troughs to crests and have a (weak) reverse flow in the upper part of
the water column.

In agreement with the above argument, it was observed that the residual flow
looks like one row of vortices (see figure 10a). The direction of the flow near the
bed is the same (towards the crests) for all values of k within the validity of the
model. However, when k increases (and the water is deep enough), a new row of cells
can appear on the top of the first one, as shown in figure 10(b). Note that for the
physical parameters given in § 3, the generation of a second row of vortices was not
observed for wavenumbers within the validity of the model. Only when the depth was
taken as large as 67 m, did the new vortices near the surface appear, starting with
some k.

Property 2. Let us ignore the direct influence of the bed perturbations. If the value
of the viscosity coefficient is smaller near the crests and larger near the valleys (i.e.
α1 < 0 in (2.10)), the time-independent component of the flow response is directed as in
figure 12.

We use the same graphical method as we did when studying the effects of a bed
perturbation. By analogy with figure 11(a), the dotted lines in figure 13 again are the
solution of problem (A 1)–(A 5). The solid lines represent the flow profile when the
viscosity varies horizontally (the vertical profile gradients near the bottom are larger
where the viscosity is smaller and smaller where the viscosity is larger). Comparing
the response flow in figure 13 with the corresponding flow in figure 11, we can see that
they have opposite directions. Therefore, the flow induced by viscosity perturbations
looks like recirculating cells directed from crests to troughs of sand waves.

This is not surprising if one thinks of the flows corresponding to the varied viscosity

as solutions of problem (A 1)–(A 5) with νt = ν0 ± ĥν1, i.e. with δ being smaller on
tops of crests and larger in the valleys. Note that δ only enters the problem as the
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Direction of tide

m smaller m bigger m smaller

Figure 13. The changes in the flow induced indirectly, through a depth-dependent viscosity. The
direct influence of bed perturbations is not shown.

ratio H/δ, i.e. the surface boundary condition is now evaluated at a larger height
over tops of crests and at a smaller height in the valleys. Therefore, the changes of
viscosity counteract the changes of depth. Namely, where the bed is lifted by the

amount ĥ (depth decreased), the viscosity becomes smaller and the relative depth,
H/δ, increases! So effectively, the changes of viscosity reduce the changes in the
relative depth caused by the bottom perturbation.

We have shown that for small values of k, the time-independent flow looks like one
row of vortices, see figure 12(a). However, if k increases and exceeds some value k̃0, a
second row of cells appears from below and this flow rotates in the opposite direction
to the initial cells (see figure 12b). The initial cells move towards the surface. Therefore,
for k < k̃0, the viscosity changes give rise to a flow which has a tendency to flatten
the sand waves, i.e. the viscosity changes have an effect opposite to the effect of the
bed perturbation. For k > k̃0, the effect of perturbed viscosity enhances the effect of
bottom perturbations. This can be explained in the following way. As it was argued,
viscosity perturbations effectively act like surface perturbations, which means that
near the surface the direction of the secondary flow always stays the same. As in the
case of bed perturbations, as k grows, the flow has a tendency to separate, and instead
of one row of vortices there are two. In the case of bed perturbations, the new row
of cells appeared from the surface. In the case of viscosity perturbations, it is at the
bottom where the new row of cells appears. The initial cells persist, so the flow away
from the bottom has the same direction as before, and the direction near the bottom
changes sign. The value of k̃0 is usually such that the corresponding wavelength is of
order of (or smaller than) the tidal excursion length (equal to 2πU/σ), i.e. this effect
belongs to the range of length scales where the model holds.

Remark. Note that the vortices of figure 12(a) immediately lead to an exponen-
tial decay of the underlying bed perturbation and therefore can only be observed
numerically.

Summary. As we have seen, Property 1 generates sand waves, and Property 2
provides a mechanism for damping ultra-long waves. The relative strength of the two
effects depends on the concrete model. In the previous section we showed that for
model (2.11), the time-independent component of the viscosity perturbation satisfies
the assumption of Property 2 (α1 < 0), and the time-dependent component is small
for small values of k. This means that the flow has both Properties 1 and 2 and the
flow can be thought of as a superposition of the two types of flow. For small values of
k, the time-independent flow component consists of the contributions of figures 10(a)
(direct instability mechanism) and 12(a) (the flow of Property 2). It was demonstrated
numerically that the effect of Property 2 is noticeable, i.e. the vortices of figure 12(a)
are strong enough to reverse the sense of rotation of the flow cells. Figure 6(a) shows
that this effect creates a finite gap between the zero mode and the most excited mode.
Numerical simulations of the previous section showed that it is the near-bed velocity
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dependence of the viscosity which is responsible for damping modes with small k.
The direct D-dependence does not play a significant role. For larger values of k,
the cells of Property 2 reverse their direction of rotation. The time-independent flow
corresponding to the first excited wavenumber, shown in figure 7, is a superposition
of flows given in figures 10(a) and 12(b).

4.1. Morphodynamics

As we know the bottom shear stress behaviour for models (a) and (b), we can now
comment on the combined effect of gravity and hydrodynamics which manifests itself
in the dispersion relation. From equation (2.33) we can see that the growth of sand
patterns is determined by the balance of the two terms:

iω ∝ (kΨ10zz

∣∣
z=0(k)− const k2), (4.1)

the ‘scraping term’ and the term representing gravity.
In model (a), for every k > 0 there is a sand wave amplifying circulation near the

bed. In this case, Ψ10zz at z = 0 is always positive, grows linearly for small values
of k and then reaches saturation (grows slower than k for large k). Therefore, from
equation (4.1) it is clear that for large k, Re iω < 0. These short bed waves are
damped because of the gravity term. The long waves are either damped for (very)
large values of the control parameter λ, or excited as the stress parameter passes its
critical value. When λ becomes smaller than critical, the first waves that get excited
are ultra-long waves, which is not physical.

A different behaviour is observed for viscosity model (b). There, viscosity pertur-
bations lead to the decay of long waves and encourage the growth of shorter waves.
In dispersion relation (4.1), the term kΨ10zz(z = 0) is now negative for small k and
changes sign as k becomes larger. The morphodynamics of the system is now governed
by three main effects:

growth of bed features due to the direct flow response to the bed perturbations;
damping of short bed waves due to the downhill effect in the sediment transport

formula (an effect of gravity);
damping of ultra-long waves due to the unb-dependence of turbulent viscosity (a

hydrodynamical effect).
Note that the damping of short waves is not only due to the gravity, but also (and

mainly) because the flow itself acts to move the sand from the crests down to the
troughs. The balance of the three effects leads to the choice of the most unstable
wavenumber.

5. Discussion and conclusions
In this paper it was shown that if parameterization (b) is employed for the eddy

viscosity, the system chooses a most excited mode whose wavelength turns out to be
similar to the observed sand wave spacing.

We will now discuss the applicability and limitations of the model used in this
work. The shallow water approximation was used in order to make the equations
simpler. It was checked that the mechanisms and results do not change if one drops
this approximation. It was also checked that including the effects of the horizontal
turbulent viscosity, νhort , did not make a significant difference.

Next, it must be noted that not all horizontal scales can be studied by means
of our model. Namely, hydrodynamical equations (2.18)–(2.21) can only be used for
horizontal distances between about 100 m and 80 km. The upper bound comes from
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condition kR > 1, i.e. only distances smaller than the characteristic tidal wavelength
(which is about 800 km) can be considered. However, one should note that Coriolis
effects (which becomes important at horizontal scales of about 5 km) are not included
in this paper. The lower bound states that the horizontal distances must be bigger
than the turbulent boundary layer thickness (the processes that take place on smaller
scales are averaged out and included in the turbulent viscosity parameter). Note
that the range of horizontal scales allowed by this model covers the range of sand
wavelengths well.

Related studies (e.g. Blondeaux 1990 and, recently, Gerkema 1998) have shown
that the ratio H/δ is an important parameter. The value of H/δ determines whether
or not the constant-viscosity parameterization leads to a damping of the very long
waves. In the case when H/δ � 1 (sand ripples), the constant-viscosity model leads
to the damping of the ultra-long waves. In this case, this is indeed the only applicable
model since the viscosity there is just the molecular viscosity. The damping of the
long waves can be explained if one uses the series Ψ1(k) = c1k + c2k

2 + · · ·. The first
constant, c1, turns out to be inversely proportional to the ratio H/δ and therefore it
disappears in the deep water limit. This result can be proven analytically for small
values of kR if one repeats the analysis of Lyne (1971) in the case of a finite depth,
and the same (linear) dependence of c1 on δ/H was found numerically for large
values of kR (this is in agreement with Gerkema 1998). As a consequence, in the
case of deep water, the recirculating cells which tend to build up the sand bumps are
quadratically weak when k is small, and the long waves are naturally damped by the
gravity term (which is quadratic, and if the multiplier λ in front of it is large enough,
the resulting growth rate is negative). In the case of sand waves, when H/δ ∼ 1, the
recirculating cells grow linearly with k and are too strong to be overcome by gravity.
This shows that the simple model where the turbulent viscosity is assumed to be a
constant fails to grasp the important physical process of damping long bed waves. In
this paper we have presented a model where the assumption that the eddy viscosity
is a constant was dropped. It was demonstrated that this gives a way to overcome
the shortcoming of the previous model.

We would like to emphasize again that the model we used is not an artificial way to
suppress long waves in the system. The notion of a Stokes layer is only well-defined
in systems with a laminar flow where ν is the molecular viscosity. In a laminar flow,
the friction effects are described well by this constant. However, it is only by analogy
that a Stokes layer is introduced in systems with a well-developed turbulence, and
it does not follow that this layer thickness should be a constant quantity. In fact,
this thickness must change if the velocity profile and the depth change horizontally.
In this work we used a very simple phenomenological viscosity model which could
be refined in many different ways. One can for instance let the viscosity be a z-
dependent quantity, or use another way to estimate the characteristic flow velocity
which enters the expression for the eddy viscosity. The concrete functional form of
viscosity parameterization is not necessary to grasp the effect of damping ultra-long
waves. A general conclusion that follows from the present analysis is the following:
if (for small values k) the viscosity is larger in troughs than it is over crests, this
provides a mechanism for suppressing long waves.

Another important result is that the wavelength of the most excited waves can
be estimated using a very simple formula, equation (3.3). Using this relation, we can
conclude that δ plays a crucial role in the dynamics. This can be extended to other
models which include a similar sediment transport formula and have an appropriate
control parameter. For instance, in the case of sea waves, the Stokes layer thickness
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is very small, and the resulting periodic features (sand ripples) have a wavelength of
several centimetres (Blondeaux 1990).

This paper is devoted to the linear analysis of the model and the uncovering of
basic physical mechanisms responsible for the sand wave excitation. The next step
is to predict a longer-scale time and space behaviour of sand waves. This can be
done by means of a nonlinear analysis. The result of the present paper provides a
good starting point for developing a weakly nonlinear theory of sand waves. Some
forthcoming work will give more evidence that the model proposed in this paper
indeed leads to qualitatively correct results when one tries to estimate the height of
the saturated nonlinear sand waves (see Komarova & Newell 2000).

This paper is based on work in the PACE-project, in the framework of the EU-
sponsored Marine Science and Technology Program (MAST-III), under contract no.
MAS3-CT95-0002. This work was co-sponsored (S. H.) by the Technology Foundation
STW, contract TCT.4466. One of the authors (N. K.) thanks the Department of Civil
Engineering, University of Twente for their hospitality during her stay there while
working on the paper.

Appendix A
The system of equations that the basic tidal solution satisfies can be written as

(2∂t − ∂2
z )u0z = 0, (A 1)

z = H/δ : u0z = 0, (A 2)

z = 0 : u0z = S ′δ/νt u0 = S ′0δ/ν0 u0 ≡ S0u0, (A 3)

where S ′0 is the resistance parameter, S ′, corresponding to the basic tide, and S0 is
the dimensionless resistance parameter. Note that this system allows many different
solutions. We want the basic solution to be an M2-tide; therefore we should prescribe
the time-dependence of u0 to be

u0(z, t) = ũ(z) sin (t+ Φ(z)). (A 4)

This reduces the above partial differential equation to a system of ordinary differential
equations in z for functions ũ and Φ(z). The resulting system still does not have a
unique solution. If we impose a normalization condition,

(δ/H)

∫ H/δ

0

u0(z, t) dz = sin t, (A 5)

the solution u0 can be found in a unique way. Condition (A 5) is used in order to fix
the vertically averaged flow (in dimensional variables) to be U sin σt. Finally, we need
to define the parameters in equations (A 1)–(A 3). We have the following definitions:

δ =
√

2ν0/σ, ν0 =

{
model (a) : a given constant

model (b) : c1HUũ (z = d)/
√

2,
(A 6)

S0 = S ′0δ/ν0, S ′0 =

{
model (a) : a given constant

model (b) : c2Uũ (z = d)/
√

2.
(A 7)

Expressions (A 6)–(A 7) define the viscosity and the resistance parameter. In model
(a), they are external constants of the system, whereas in model (b) they depend on
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the unknown function u0. It is important to note that due to the structure of the basic
state (A 4), even in the case of model (b), ν0 and S ′0 are time-independent quantities.
This is a consequence of the truncation in definition (2.11). To make this more clear,
we now explicitly derive equation ν0 = c1HUũ (z = d)/

√
2.

We start with definition (2.11) and use the basic tidal solution (in the form (A 4)) to
find the near-bed velocity, unb = u0(z = d). Next, we expand the absolute value of this
expression into a Fourier series in time, |unb| = ũ (z = d)/

√
2 + u(2) sin (2t+Φ(2)) + · · ·.

It contains time-independent harmonics but it does not contain a term reflecting
the tidal frequency, i.e. ∝ sin (t + Φ(1)), which is a consequence of the specific time-
behaviour of the M2-tide and as well as the fact that we are taking an absolute value
of this function. Finally, in order to satisfy the requirement that the time-dependence
of ν cannot contain higher harmonics than the ones present in the flow, we need to
neglect all the time harmonics except for the zeroth and the first one. Therefore, only
the first term in the expansion for |unb| should be taken into account. From this the
time-independent expressions (A 6)–(A 7) follow.

Equations (A 1)–(A 7) are a self-consistent system for determining the basic tidal
solution, u0, together with the corresponding turbulent viscosity, ν0. For both viscosity
models, this system can be solved exactly:

u0 =
iH

2δ

cosh (1 + i)(H/δ − z)− cosh (1 + i)H/δ − (1 + i)/S0 sinh (1 + i)H/δ

(H/δ(1 + i)/S0 − (1 + i)−1) sinh (1 + i)H/δ +H/δ cosh (1 + i)H/δ
eit + c.c.

≡ us(z) sin t+ uc(z) cos t. (A 8)

Solution (A 8) is similar to the ones obtained in Gerkema (2000). A more general
(three-dimensional) version of this solution was obtained, for instance, in Visser et
al. (1994) and Hulscher (1996). In the limit of the infinite depth, it becomes exactly
the solution used by Blondeaux (1990). Note that solution (A 8) holds for each of the
viscosity models.

Appendix B
In this Appendix, a bed-load sediment transport model will be derived, which

accounts for both direct bed-slope effects and the influence of the bed slope on the
threshold of motion.

Following Fredsoe & Deigaard (1992, p. 206), the volumetric sediment transport,
q, (measured in m2 s−1) is given by

q = Φb
√

(s− 1)gd3, (B 1)

in which Φb is non-dimensional transport, s = ρs/ρ is the relative density of the
sediment (ρs) with respect to water density (ρ), g is the acceleration due to gravity
(m s−2) and d is grain diameter (m). To make the Meyer–Peter–Muller formula
(Fredsoe & Deigaard 1992, p. 214) work for tidal motion (instead of a unidirectional
flow), the Heaviside function, H, is introduced. It ensures no motion below the
threshold. If Θ

′
denotes the (non-dimensional) Shields parameter and Θc is the

critical Shields parameter above which sediment starts to move, the transport is given
by

Φb = 8B||Θ ′ | −Θct|3/2Θ ′/|Θ ′| H(|Θ ′ | −Θc). (B 2)

Note that this formula correctly models the sign of the sediment transport. Θ
′

is
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related to the volumetric bed shear stress, τb (in units m2 s−2), by

Θ
′
=

τb

g(s− 1)d
. (B 3)

Equation (B 2) includes two effects. One is the existence of a critical Θ ′c which gives
the threshold of motion. The other is contained in the factor B and describes the
fact that the slope directly changes the sediment transport (Bagnold 1956). Both Θ ′c
and B depend on the angle φ, which is given by the slope gradient, −hx. We have
(Fredsoe & Deigaard 1992, p. 205)

Θc = Θc0 cosφ

(
1− tanφ

tanφs

)
= Θc0

1√
1 + h2

x

√
1 +

hx

tanφs
, (B 4)

in which φs is the friction angle, the angle of no repose. The second effect of the
sloping bed can be expressed as

B = (1− tanφ/ tanφs)
−1 = (1 + hx/ tanφs)

−1. (B 5)

Substituting equations (B 2)–(B 5) into (B 1), we find the sediment transport as a
function of the volumetric shear stress, τb, and bed gradient, hx:

q = C1

τb

|τb|
∣∣∣∣τb − C2

(
1 + hx/tanφs

1 + h2
x

)∣∣∣∣3/2(1 +
hx

tanφs

)−1

H(|τb| − C2), (B 6)

where

C1 =
8

g(s− 1)
, C2 = Θc0g(s− 1)d. (B 7)

For a small bed gradient hx � 1 as well as hx/tanφs � 1, we may approximate
equation (B 6) by

q = C1H(|τb| − C2)

∣∣∣∣|τb| − C2

[
1 +

hx

tanφs

]∣∣∣∣3/2 τb

|τb|
(

1− hx

tanφs

)
. (B 8)

If the strength of the flow is far beyond critical (C2 � τb), we can approximate
even further:

q = C1

√|τb|γ̃(τb − 3C2

2γ̃ tanφs
hx − |τb|

tanφs
hx

)
, (B 9)

with

γ̃ =

(|τb| − 3
2
C2

)
τb

H(|τb| − C2), (B 10)

which can be estimated by its long-term average value. Now we can present the
sediment transport as

q = α′
√|τb|(τb − λ1hx − λ2|τb|hx), (B 11)

where

α′ =
8γ̃

(s− 1)g
, λ1 =

3Θc0g(s− 1)d

2γ̃ tanφs
, λ2 =

1

tanφs
. (B 12)

Note that (for the purposes of a linear stability analysis) both down-slope terms
contribute in the same manner. The only difference is the power of the tidal shear
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stress in front of hx. We can combine the two terms and obtain

q = α′
√|τb|(τb − λ′hx), (B 13)

where an estimate for the dimensional parameter λ′ is λ′ ≈ λ1 +[τb]λ2, and the bottom
shear stress is replaced by its characteristic value, [τ]. Finally, we can write down the
dimensionless expressions for α and λ which appear in the scaled sediment equation
(2.16):

α =
8γ̃[τ]3/2

(s− 1)gσδ2
, λ =

3Θc0g(s− 1)d

2γ̃ tanφs[τ]
+

1

tanφs
. (B 14)

Note that the first term in the expression for λ (which is the main contribution
to λ) makes very clear physical sense: it is equal to (grain weight/area)/flow shear
stress. Typical values are ρ = 1.0 103 kg m−3, ρs = 2.65 103 kg m−3, tanφs = 0.3,
g = 9.81 m s−2 (van Rijn 1993; Dyer 1986). Although various estimates of the critical
Shields parameter on a flat bed, Θc0, are available in the literature (van Rijn 1993;
Fredsoe & Deigaard 1992), it is modelled well by a constant Θc0 = 0.047. The factor
γ̃ is time-dependent and can roughly be approximated by its tidal average value. Only
during some part of the tidal period is the shear stress larger than critical, and a
rough estimate gives 0.1 < γ̃ < 1.

Now we can estimate α′. For typical parameters given in § 3, we obtain α′ ≈
1.6 × 10−6 m2 s−1. This leads to the following estimate for the characteristic time of
sand wave growth: ∆T = 1.9 years.

The value of λ depends on the sediment size, d. Typical range in which sand grain
size varies is approximately from 50 µm to 2 mm, which corresponds to parameter λ
between 2.2 and 330.
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